EPD-IES-0025365:001

Bituplus E4200 EG

BITUPLUS E4200 EG is a bituminous waterproofing membrane of the brand Polybit, manufactured from a rich mixture of bitumen and SBS (Styrene Butadiene Styrene) polymers to obtain excellent waterproofing and low temperature flexibility properties.

General information

EPD OwnerHenkel AG & Co. KGaA
Registration numberEPD-IES-0025365:001
EPD typeEPD of a single product from a manufacturer/service provider
StatusValid
Initial version date2025-12-18
Validity date2030-12-17
Standards conformanceISO 14025:2006, EN 15804:2012+A2:2019/AC:2021, ISO 21930:2017
Geographical scopeGlobal
An EPD may be updated or depublished if conditions change. This is the latest version of the EPD.

Programme information

ProgrammeThe International EPD® System 
AddressEPD International AB Box 210 60 SE-100 31 Stockholm Sweden
Websitewww.environdec.com
E-mailsupport@environdec.com

Product category rules

CEN standard EN 15804 and ISO standard ISO 21930 serve as the core Product Category Rules (PCR)
Product Category Rules (PCR)2019:14 Construction products (EN 15804+A2) (version 2.0.1) 2.0.1
PCR review was conducted byThe Technical Committee of the International EPD System. See www.environdec.com for a list of members. Review chair: Rob Rouwette (chair), Noa Meron (co-chair). The review panel may be contacted via the Secretariat www.environdec.com/support.

Verification

LCA accountabilityMassimo Collotta, massimo.collotta@henkel.com, Henkel AG & Co. KGaA AJITH THAYYIL GOPI, ajith.thayyil@henkel.com, Henkel AG & Co. KGaA
Independent third-party verification of the declaration and data, according to ISO 14025:2006, via
Third-party verifierSilvia Vilčeková (SILCERT, Ltd.)
Approved byInternational EPD System
Procedure for follow-up of data during EPD validity involves third party verifier
*EPD Process Certification involves an accredited certification body certifying and periodically auditing the EPD process and conducting external and independent verification of EPDs that are regularly published. More information can be found in the General Programme Instructions on www.envrondec.com.

Ownership and limitation on use of EPD

Limitations

EPDs within the same product category but published in different EPD programmes, may not be comparable. For two EPDs to be comparable, they shall be based on the same PCR (including the same first-digit version number) or be based on fully aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have identical scope in terms of included life-cycle stages (unless the excluded life-cycle stage is demonstrated to be insignificant); apply identical impact assessment methods (including the same version of characterisation factors); and be valid at the time of comparison.

Ownership

The EPD Owner has the sole ownership, liability, and responsibility for the EPD.

Information about EPD Owner

EPD OwnerHenkel AG & Co. KGaA
Contact person nameMassimo Collotta
Contact person e-mailmassimo.collotta@henkel.com
Organisation addressGermany Düsseldorf 40589 Henkelstraße 67

Description of the organisation of the EPD Owner

Henkel AG & Co. KGaA, commonly known as Henkel, is a German multinational chemical and consumer goods company headquartered in Düsseldorf, Germany. Henkel Adhesive Technologies Construction is a division of Henkel which offers, among others, a wide choice of waterproofing systems tailored to varied needs. This EPD is focused on the key components of Torch on Membranes (TOM). These components are mainly sold under the brand of Henkel Polybit. For more information, please visit: www.henkelpolybit.com

Organisation logo

Product information

Product nameBituplus E4200 EG
Product identificationITUPLUS E4200 EG, is a bituminous waterproofing membrane of the brand Polybit, manufactured from a rich mixture of bitumen and SBS (Styrene Butadiene Styrene) polymers to obtain excellent waterproofing and low temperature flexibility properties. The BITUPLUS E4200 EG, “reinforced bitumen, plastic and rubber flexible sheets intended for roof waterproofing according to EN 13707 and EN 13956” as stated in EN 17388:2024.
Product descriptionBITUPLUS E4200 EG is a bituminous waterproofing membrane of the brand Polybit, manufactured from a rich mixture of bitumen and SBS (Styrene Butadiene Styrene) polymers to obtain excellent waterproofing and low temperature flexibility properties.
Technical purpose of productBituPLUS E4200 EG is used as a bituminous waterproofing membrane on the following structures: concrete foundations & footings, basements, pile heads, swimming pools & water retaining structures (externally), tunnels, wet areas (kitchens & bathrooms).
Manufacturing or service provision descriptionFrom the heated bitumen storage tank, the bitumen is transferred to the primary mixer, where it is heated and mixed with other raw materials. It is then transferred to the secondary mixer for further heating and mixing with additional raw materials. Afterward, the mixture enters the process line where the sheets are formed, cooled with water, slit to the required dimensions, and finally packed.
Material propertiesArea density: 4.75 kg/m2 Thickness: 0.004 m
Area density:
4.75 kg/m2
Thickness:
0.004 m
Manufacturing siteBituNil Alexandria Egypt Cairo 11341
UN CPC code3480. Synthetic rubber and factice derived from oils, and mixtures thereof with natural rubber and similar natural gums, in primary forms or in plates, sheets or strip
Geographical scopeGlobal
Actual or technical lifespan60 year(s)

Product images

Content declaration

Hazardous and toxic substancesThe product does not contain any substances from the SVHC candidate list in concentrations exceeding 0.1% of its weight.
Product content
Content nameMass, kgPost-consumer recycled material, mass-% of productBiogenic material, mass-% of productBiogenic material1, kg C/declared unitBiogenic material kg CO2, eq./declared unit
Organics, nonvolatiles1.960000
Inorganics2.790000
Total4.750000
Note 11 kg biogenic carbon is equivalent to 44/12 kg of CO2
Packaging materials
Material nameMass, kgMass-% (versus the product)Biogenic material1, kg C/declared unitBiogenic material kg CO2, eq./declared unit
Paper and Cardboard0.0130.180.00650.02383333
Wood0.1011.440.05040.1848
Plastic0.3625.1700
Total0.4766.790.05690.20863333
Note 11 kg biogenic carbon is equivalent to 44/12 kg of CO2

LCA information

EPD based on declared or functional unitDeclared unit
Declared unit and reference flowBituplus E4200 EG Area: 1 m2
Conversion factor to mass4.75
Are infrastructure or capital goods included in any upstream, core or downstream processes?
Datasources used for this EPDecoinvent database (general) ecoinvent 3.11 database
LCA SoftwareSimaPro SimaPro 9.6
Version of the EN 15804 reference packageEF Reference Package 3.1
Characterisation methodsGWP 100,EN 15804. version: EF 3.1
Technology description including background systemThe product mainly consists of 30% bitumen, with other additives and polymers. -The production process begins from the heated bitumen storage tank, the bitumen is transferred to the primary mixer, where it is heated and mixed with other raw materials. It is then transferred to the secondary mixer for further heating and mixing with additional raw materials. Afterward, the mixture enters the process line where the sheets are formed, cooled with water, slit to the required dimensions, and finally packed -No additional processes or raw materials are needed during the use stage of the assessed product. Hence, modules B1 to B7 are not considered. -The End-of-Life scenario for the products has been provided by Henkel, where it is assumed that 100% goes to landfill.The 100% of the bitumen membrane products are disposed in the landfill (Based on Henkel estimation and also presented in an industry-wide EPD by the Asphalt Roof Manufacturers Association) after its useful life.
Scrap (recycled material) inputs contribution levelLess than 10% of the GWP-GHG results in modules A1-A3 come from scrap inputs

Data quality assessment

Description of data quality assessment and reference yearsThe quality of the relevant data used for the EPD in terms of its time, geography and technology representativeness using EN 15804:2012+A2:2019. The data used in this LCA study are of high quality and representative of the technologies, processes, and geographic location relevant to the production of Bituplus E4200 EG. The Reference year is 2024.
Data quality assessment
Process nameSource typeSourceReference yearData categoryShare of primary data, of GWP-GHG results for A1-A3
A1 moduleCollected dataEPD owner2024Primary Data0.25%
A2 module DatabaseEcoinvent 3.112024Primary Data2.58%
A3 moduleCollected dataEpd owner2024Primary Data10.81%
Total share of primary data, of GWP-GHG results for A1-A313.64%
The share of primary data is calculated based on GWP-GHG results. It is a simplified indicator for data quality that supports the use of more primary data to increase the representativeness of and comparability between EPDs. Note that the indicator does not capture all relevant aspects of data quality and is not comparable across product categories.
Electricity data
Electricity used in the manufacturing process in A3 (A5 for services)
Type of electricity mixResidual electricity mix on the market
Energy sourcesHydro6.75%
Wind3.23%
Solar0%
Biomass0%
Geothermal0%
Waste0%
Nuclear0%
Natural gas82.41%
Coal0%
Oil7.59%
Peat0%
Other0%
GWP-GHG intensity (kg CO2 eq./kWh)0.61 kg CO2 eq./kWh

System boundary

Description of the system boundaryb) Cradle to gate with options, modules C1-C4, module D and with optional modules (A1-A3 + C + D and additional modules).
Excluded modulesYes, there is an excluded module, or there are excluded modules
Justification for the omission of modulesNo additional processes or raw materials are needed during the use phase of the assessed products. Therefore, modules B1 to B7 are not considered and have no impact on the environmental performance of the product.

Declared modules

Product stageConstruction process stageUse stageEnd of life stageBeyond product life cycle
Raw material supplyTransportManufacturingTransport to siteConstruction installationUseMaintenanceRepairReplacementRefurbishmentOperational energy useOperational water useDe-construction demolitionTransportWaste processingDisposalReuse-Recovery-Recycling-potential
ModuleA1A2A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
Modules declaredXXXXXNDNDNDNDNDNDNDXXXXX
GeographyGlobalGlobalEgyptGlobalGlobalN/AN/AN/AN/AN/AN/AN/AGlobalGlobalGlobalGlobalGlobal
Share of specific data13.64%--------------
Variation - products0%--------------
Variation - sites0%--------------
DisclaimerThe share of specific/primary data and both variations (products and sites) refer to GWP-GHG results only.

Process flow diagram(s) related images

Default scenario

Name of the default scenarioBituplus E4200 EG
Description of the default scenarioDescription of system boundaries: Cradle-to-gate with modules C1-C4, module D and optional modules A4 and A5, covering the modules of extraction and processing of raw materials (A1), their transportation to the production plant (A2), the manufacturing process (A3), transport to construction site (A4), installation (A5), end of life (C1-C4) and potential benefits and loads from the reuse and recycling of the products at its end of life (D). Product stage (A1-A3): Raw material supply (A1): this module considers the extraction and processing of raw materials used for the manufacture of the products. Transport of the raw materials (A2): this module consists of the transportation of all raw materials covered by module A1, from the extraction, production, and treatment site to the factory, considering the specific distances of each material supplier. Manufacturing of products (A3): this module refers to the production process of Bituplus E 4200 EG in the production plants. The raw materials are stored in the production factory in silos. From the heated bitumen storage tank, the bitumen is transferred to the primary mixer, where it is heated and mixed with other raw materials. It is then transferred to the secondary mixer for further heating and mixing with additional raw materials. Afterward, the mixture enters the process line where the sheets are formed, cooled with water, slit to the required dimensions, and finally packed. Before packing into pallets, product samples are tested in the quality control laboratory. Pallets with the ready-to-use product are stored for a short time in the factory's warehouses before being delivered to distributors. This scenario also represents the 100% Landfill additional scenario.

Module A4: Transport to the building site

Explanatory name of the default scenario in module A4Downstream Transport
Brief description of the default scenario in module A4Transport from factory to customer
Description of the default scenario in module A4The Site-to-site transportation includes the transportation of the finished, packaged Bituplus E4200 EG from the production facility to the different customers site (A4). The transportation from the BituNil facility to customers is therefore estimated by range distances of 2886 km based on market share of customer location.
Module A4 informationValueUnit
Distance
2886
km
Capacity utilization (including empty returns)
100
%
Bulk density of transported products
1187.5
kg/m3
Volume capacity utilization factor
(factor: =1 or <1 or ≥1 for compressed or
nested packaged products)
1
N/A
Fuel type and consumption of the vehicle Diesel, 16-32 tons trucks with 34 L per 100 km fuel consumption,
N/A

Module A5: Installation in the building

Explanatory name of the default scenario in module A5Installation
Brief description of the default scenario in module A5Installation/processing of sold product
Description of the default scenario in module A5This module considers the preparation of the product in order to be installed. LPG is used in the application of the product. The surface shall be cleaned thoroughly of all contaminants like dust, traces of curing compound, oil and grease. All surface imperfections, protrusions, structurally unsound and friable concrete must be removed and repaired. Apply Polyprime SB* (Solvent based primer) @4-6 m²/L to a clean, smooth and dry surface by brush, roller or spray. Allow the primer to dry prior to the application of the membrane. The primer promotes the adhesion between the membrane and the concrete surface.
Module A5 informationValueUnit
LPG/Bituplus31.25
kg/m3

Module C: End-of-life

Explanatory name of the default scenario in module CEnd of life
Brief description of the default scenario in module CEnd of life stage (C)
Description of the default scenario in module C- Dismantling or demolition (C1): This module analyzes the environmental impacts associated with the deconstruction or dismantling of the bitumen membrane on a construction site after their useful life. Module C1 includes all processes and activities used on site for the deconstruction of the bitumen membrane. The consumption of energy and natural resources is negligible for deconstruction of the end-of-life product, as demolition of bitumen membrane roofing is assumed to be done manually. Thus the impacts of demolition are assumed zero. - Transport to waste treatment site (C2): this module considers a default distance of 50 km (distance assumed in most EPD studies, between the construction site where the product was installed and the waste management facility (in this case landfill). - Waste treatment (C3): this module covers the process of processing construction and demolition waste through crushing, a fundamental procedure in sustainable waste management in the construction sector. This stage involves reducing the volume of waste through a crushing process, which has a significant impact on volume reduction and preparing the waste for further management and reuse. All the bitumen membrane products waste has been considered to be disposed of in the landfill as it is the most conservative scenario. - Disposal (C4): this module includes the final disposal of waste that has not been destined for recovery or treatment processes. 100% of the membrane products are disposed of in the landfill (Based on Henkel estimation and also presented in an industry-wide EPD by the Asphalt Roof Manufacturers Association) after its useful life. Since the product is distributed among several countries, a conservative scenario has been considered to avoid miscalculating the impact of the end of life of the assessed products.
Module C informationValueUnit
Waste collection process, specified by type kg collected mixed with demolition waste1
kg
Waste disposal kg to landfill1
kg
Distance to waste manager (km)50
km

Reference service life

Description of the default scenario in reference service lifeThe reference service life of the Bituplus E4200 EG is 60 years.
Reference service life informationValueUnit
Reference service life
60
year(s)

Module D: Beyond product life cycle

Explanatory name of the default scenario in module DD
Brief description of the default scenario in module DBenefits and burdens beyond the boundaries of the system
Description of the default scenario in module DModule D, considers the benefits and burdens linked to the processes of recovery, reuse or recycling of waste from the products under study at the end of their useful life, which could be part of the life cycle of a new product. Credits of the module D are 0 due to the 100% landfill of the product.

Additional scenario 1

Name of the additional scenarioBituplus E4200 EG 100% Recycling
Description of the additional scenarioThis represents a hypothetical scenario assuming 100% recycling, meaning the entire product is considered fully recycled at the end of its life cycle. Description of system boundaries: Cradle-to-gate with modules C1-C4, module D and optional modules A4 and A5, covering the modules of extraction and processing of raw materials (A1), their transportation to the production plant (A2), the manufacturing process (A3), transport to construction site (A4), installation (A5), end of life (C1-C4) and potential benefits and loads from the reuse and recycling of the products at its end of life (D). Product stage (A1-A3): Raw material supply (A1): this module considers the extraction and processing of raw materials used for the manufacture of the products. Transport of the raw materials (A2): this module consists of the transportation of all raw materials covered by module A1, from the extraction, production, and treatment site to the factory, considering the specific distances of each material supplier. Manufacturing of products (A3): this module refers to the production process of Bituplus E4200 EG in the production plants. The raw materials are stored in the production factory in silos. From the heated bitumen storage tank, the bitumen is transferred to the primary mixer, where it is heated and mixed with other raw materials. It is then transferred to the secondary mixer for further heating and mixing with additional raw materials. Afterward, the mixture enters the process line where the sheets are formed, cooled with water, slit to the required dimensions, and finally packed. Before packing into pallets, product samples are tested in the quality control laboratory. Pallets with the ready-to-use product are stored for a short time in the factory's warehouses before being delivered to distributors.

Module A4: Transport to the building site

Description of the additional scenario in module A4The Site-to-site transportation includes the transportation of the finished, packaged Bituplus E4200 EG from the production facility to the different customers site (A4). The transportation from the BituNil facility to customers is therefore estimated by range distances of 2886 km based on market share of customer location.
Module A4 informationValueUnit
Distance
2886
km
Capacity utilization (including empty returns)
100
%
Bulk density of transported products
1187.5
kg/m3
Volume capacity utilization factor
(factor: =1 or <1 or ≥1 for compressed or
nested packaged products)
1
N/A
Fuel type and consumption of the vehicle Diesel, 16-32 tons trucks with 34 L per 100 km fuel consumption,
N/A

Module A5: Installation in the building

Description of the additional scenario in module A5This module considers the preparation of the product in order to be installed. LPG is used in the application of the product. The surface shall be cleaned thoroughly of all contaminants like dust, traces of curing compound, oil and grease. All surface imperfections, protrusions, structurally unsound and friable concrete must be removed and repaired. Apply Polyprime SB* (Solvent based primer) @4-6 m²/L to a clean, smooth and dry surface by brush, roller or spray. Allow the primer to dry prior to the application of the membrane. The primer promotes the adhesion between the membrane and the concrete surface.
Module A5 informationValueUnit
LPG/Bituplus31.25
kg/m3

Module C: End-of-life

Description of the additional scenario in module C- Dismantling or demolition (C1): This module analyzes the environmental impacts associated with the deconstruction or dismantling of the bitumen membrane on a construction site after their useful life. Module C1 includes all processes and activities used on site for the deconstruction of the bitumen membrane. The consumption of energy and natural resources is negligible for deconstruction of the end-of-life product, as demolition of bitumen membrane roofing is assumed to be done manually. Thus the impacts of demolition are assumed zero. - Transport to waste treatment site (C2): this module considers a default distance of 50 km (distance assumed in most EPD studies, between the construction site where the product was installed and the waste management facility (in this case landfill). - Waste treatment (C3): this module covers the process of processing construction and demolition waste through crushing, a fundamental procedure in sustainable waste management in the construction sector. This stage involves reducing the volume of waste through a crushing process, which has a significant impact on volume reduction and preparing the waste for recycling. - Disposal (C4): this module includes the final disposal of waste that has not been destined for recovery or treatment processes. Since this scenario is 100 % recycling this module is not considered here.
Module C informationValueUnit
Waste collection process, specified by type kg collected mixed with demolition waste1
kg
Recovery process waste, specified by type kg for recycling1
kg
Distance to waste manager (km)50
km

Reference service life

Description of the additional scenario in reference service lifeThe reference service life of the Bituplus E4200 EG is 60 years.
Reference service life informationValueUnit
Reference service life
60
year(s)

Module D: Beyond product life cycle

Description of the additional scenario in module DModule D, considers the benefits and burdens linked to the processes of recovery, reuse or recycling of waste from the products under study at the end of their useful life, which could be part of the life cycle of a new product. The recycling of the product fully substitutes the manufacture of an equivalent new product; therefore, the avoided burdens of modules A1–A3 are reported as credits in Module D.

Additional scenario 2

Name of the additional scenarioBituplus E4200 EG 100% Reuse
Description of the additional scenarioThis represents a hypothetical scenario assuming 100% reuse, meaning the entire product is considered fully reused at the end of its life cycle. Description of system boundaries: Cradle-to-gate with modules C1-C4, module D and optional modules A4 and A5, covering the modules of extraction and processing of raw materials (A1), their transportation to the production plant (A2), the manufacturing process (A3), transport to construction site (A4), installation (A5), end of life (C1-C4) and potential benefits and loads from the reuse and recycling of the products at its end of life (D). Product stage (A1-A3): Raw material supply (A1): this module considers the extraction and processing of raw materials used for the manufacture of the products. Transport of the raw materials (A2): this module consists of the transportation of all raw materials covered by module A1, from the extraction, production, and treatment site to the factory, considering the specific distances of each material supplier. Manufacturing of products (A3): this module refers to the production process of Bituplus E4200 EG in the production plants. The raw materials are stored in the production factory in silos. From the heated bitumen storage tank, the bitumen is transferred to the primary mixer, where it is heated and mixed with other raw materials. It is then transferred to the secondary mixer for further heating and mixing with additional raw materials. Afterward, the mixture enters the process line where the sheets are formed, cooled with water, slit to the required dimensions, and finally packed. Before packing into pallets, product samples are tested in the quality control laboratory. Pallets with the ready-to-use product are stored for a short time in the factory's warehouses before being delivered to distributors.

Module A4: Transport to the building site

Description of the additional scenario in module A4The Site-to-site transportation includes the transportation of the finished, packaged Bituplus E4200 EG from the production facility to the different customers site (A4). The transportation from the BituNil facility to customers is therefore estimated by range distances of 2886 km based on market share of customer location.
Module A4 informationValueUnit
Distance
2886
km
Capacity utilization (including empty returns)
100
%
Bulk density of transported products
1187.5
kg/m3
Volume capacity utilization factor
(factor: =1 or <1 or ≥1 for compressed or
nested packaged products)
1
N/A
Fuel type and consumption of the vehicle Diesel, 16-32 tons trucks with 34 L per 100 km fuel consumption,
N/A

Module A5: Installation in the building

Description of the additional scenario in module A5This module considers the preparation of the product in order to be installed. LPG is used in the application of the product. The surface shall be cleaned thoroughly of all contaminants like dust, traces of curing compound, oil and grease. All surface imperfections, protrusions, structurally unsound and friable concrete must be removed and repaired. Apply Polyprime SB* (Solvent based primer) @4-6 m²/L to a clean, smooth and dry surface by brush, roller or spray. Allow the primer to dry prior to the application of the membrane. The primer promotes the adhesion between the membrane and the concrete surface.
Module A5 informationValueUnit
LPG/Bituplus31.25
kg/m3

Module C: End-of-life

Description of the additional scenario in module CDismantling or demolition (C1): This module analyzes the environmental impacts associated with the deconstruction or dismantling of the bitumen membrane on a construction site after their useful life. Module C1 includes all processes and activities used on site for the deconstruction of the bitumen membrane. The consumption of energy and natural resources is negligible for deconstruction of the end-of-life product, as demolition of bitumen membrane roofing is assumed to be done manually. Thus the impacts of demolition are assumed zero. - Transport to waste treatment site (C2): this module considers a default distance of 50 km (distance assumed in most EPD studies, between the construction site where the product was installed and the waste management facility (in this case landfill). - Waste treatment (C3): this module covers the process of processing construction and demolition waste through crushing, a fundamental procedure in sustainable waste management in the construction sector. This stage involves reducing the volume of waste through a crushing process, which has a significant impact on volume reduction and preparing the waste for recycling. - Disposal (C4): this module includes the final disposal of waste that has not been destined for recovery or treatment processes. Since this scenario is 100 % recycling this module is not considered here.
Module C informationValueUnit
Waste collection process, specified by type kg collected mixed with demolition waste1
kg
Recovery process waste, specified by type kg for reuse1
Distance to waste manager (km)50
km

Reference service life

Description of the additional scenario in reference service lifeThe reference service life of the Bituplus E4200 EG is 60 years.
Reference service life informationValueUnit
Reference service life
60
year(s)

Module D: Beyond product life cycle

Description of the additional scenario in module DModule D, considers the benefits and burdens linked to the processes of recovery, reuse or recycling of waste from the products under study at the end of their useful life, which could be part of the life cycle of a new product. The reuse of the product fully substitutes the manufacture of an equivalent new product; therefore, the avoided burdens of modules A1–A3 are reported as credits in Module D.

Environmental performance

The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks.

Mandatory environmental performance indicators according to EN 15804

Impact categoryIndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
Climate change - totalGWP-totalkg CO2 eq.7.82E+02.76E+01.06E+0NDNDNDNDNDNDND0.00E+04.52E-20.00E+02.98E-20.00E+0
Climate change - fossilGWP-fossilkg CO2 eq.7.81E+02.76E+01.06E+0NDNDNDNDNDNDND0.00E+04.52E-20.00E+02.97E-20.00E+0
Climate change - biogenicGWP-biogenickg CO2 eq.-2.03E-16.92E-42.11E-1NDNDNDNDNDNDND0.00E+09.54E-60.00E+01.02E-50.00E+0
Climate change - land use and land-use changeGWP-luluckg CO2 eq.4.37E-31.24E-33.50E-4NDNDNDNDNDNDND0.00E+01.50E-50.00E+01.69E-50.00E+0
Ozone depletionODPkg CFC-11 eq.3.37E-73.63E-83.66E-8NDNDNDNDNDNDND0.00E+09.94E-100.00E+08.29E-100.00E+0
AcidificationAPmol H+ eq.2.95E-21.05E-23.16E-3NDNDNDNDNDNDND0.00E+02.53E-40.00E+02.08E-40.00E+0
Eutrophication aquatic freshwaterEP-freshwaterkg P eq.1.69E-43.42E-51.25E-5NDNDNDNDNDNDND0.00E+03.31E-70.00E+02.91E-70.00E+0
Eutrophication aquatic marineEP-marinekg N eq.5.59E-33.52E-36.57E-4NDNDNDNDNDNDND0.00E+01.05E-40.00E+07.94E-50.00E+0
Eutrophication terrestrialEP-terrestrialmol N eq.6.29E-23.89E-27.19E-3NDNDNDNDNDNDND0.00E+01.15E-30.00E+08.73E-40.00E+0
Photochemical ozone formationPOCPkg NMVOC eq.3.50E-21.43E-24.24E-3NDNDNDNDNDNDND0.00E+03.75E-40.00E+03.15E-40.00E+0
Depletion of abiotic resources - minerals and metalsADP-minerals&metals1kg Sb eq.5.73E-59.08E-63.86E-6NDNDNDNDNDNDND0.00E+01.52E-70.00E+04.35E-80.00E+0
Depletion of abiotic resources - fossil fuelsADP-fossil1MJ, net calorific value1.79E+23.83E+12.11E+1NDNDNDNDNDNDND0.00E+06.46E-10.00E+07.28E-10.00E+0
Water useWDP1m3 world eq. deprived2.96E+01.78E-12.20E-1NDNDNDNDNDNDND0.00E+02.49E-30.00E+03.17E-20.00E+0
AcronymsGWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).
Disclaimer 1The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator

Additional mandatory environmental performance indicators

Impact categoryIndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
Climate change - GWP-GHGGWP-GHG1kg CO2 eq.7.51E+02.74E+01.04E+0NDNDNDNDNDNDND0.00E+04.49E-20.00E+02.95E-20.00E+0
AcronymsGWP-GHG = Global warming potential greenhouse gas.
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).
Disclaimer 1The GWP-GHG indicator is termed GWP-IOBC/GHG in the ILCD+EPD+ data format. The indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO2 is set to zero.

Additional voluntary environmental performance indicators according to EN 15804

Impact categoryIndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
Particulate matter emissionsPMDisease incidence3.29E-72.16E-73.85E-8NDNDNDNDNDNDND0.00E+04.87E-90.00E+04.78E-90.00E+0
Ionizing radiation - human healthIRP1kBq U235 eq.1.12E-11.20E-27.94E-3NDNDNDNDNDNDND0.00E+02.77E-40.00E+01.69E-40.00E+0
Eco-toxicity - freshwaterETP-fw2CTUe4.14E+17.02E+03.84E+0NDNDNDNDNDNDND0.00E+08.55E-20.00E+05.26E-20.00E+0
Human toxicity - cancer effectsHTP-c2CTUh3.15E-94.62E-102.72E-10NDNDNDNDNDNDND0.00E+01.73E-110.00E+05.36E-120.00E+0
Human toxicity - non-cancer effectsHTP-nc2CTUh5.87E-82.37E-86.34E-9NDNDNDNDNDNDND0.00E+05.11E-100.00E+01.20E-100.00E+0
Land-use related impacts/soil qualitySQP2Dimensionless3.51E+12.25E+13.77E+0NDNDNDNDNDNDND0.00E+03.79E-10.00E+01.43E+00.00E+0
AcronymsPM = Potential incidence of disease due to particulate matter emissions; IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; SQP = Potential soil quality index.
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).
Disclaimer 1This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.
Disclaimer 2The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Additional voluntary environmental performance indicators

Impact categoryIndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
High-Level radioactive wasteInventorykg0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
Intermediate/low-level radioactive wasteInventorykg0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
Global warming potentialGWP 100kg CO2 eq7.64E+02.72E+01.04E+0NDNDNDNDNDNDND0.00E+04.45E-20.00E+02.90E-20.00E+0
Ozone depletion potential ODPkg CFC-11 eq3.42E-73.82E-83.78E-8NDNDNDNDNDNDND0.00E+01.05E-90.00E+08.73E-100.00E+0
Eutrophication potentialEPkg N eq3.10E-31.89E-33.58E-4NDNDNDNDNDNDND0.00E+05.63E-50.00E+04.26E-50.00E+0
Acidification potetential APkg SO2 eq2.72E-29.52E-32.80E-3NDNDNDNDNDNDND0.00E+02.31E-40.00E+01.88E-40.00E+0
Photochemical oxidant creation potential POCPkg O3 eq3.68E-12.23E-14.12E-2NDNDNDNDNDNDND0.00E+06.69E-30.00E+05.05E-30.00E+0
Acronyms
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).
Justification for inclusionAdditional optional indicators

Resource use indicators according to EN 15804

IndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
PEREMJ, net calorific value6.91E+05.33E-18.98E-1NDNDNDNDNDNDND0.00E+01.05E-20.00E+06.88E-30.00E+0
PERMMJ, net calorific value4.37E-10.00E+0-4.37E-1NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
PERTMJ, net calorific value7.35E+05.33E-14.62E-1NDNDNDNDNDNDND0.00E+01.05E-20.00E+06.88E-30.00E+0
PENREMJ, net calorific value1.76E+24.07E+12.45E+1NDNDNDNDNDNDND0.00E+06.46E-10.00E+07.28E-10.00E+0
PENRMMJ, net calorific value3.32E+0-3.32E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
PENRTMJ, net calorific value1.79E+23.83E+02.11E+1NDNDNDNDNDNDND0.00E+06.46E-10.00E+07.28E-10.00E+0
SMkg0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
RSFMJ, net calorific value0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
NRSFMJ, net calorific value0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
FWm37.01E-25.33E-35.38E-3NDNDNDNDNDNDND0.00E+08.01E-50.00E+07.55E-40.00E+0
AcronymsPERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water.
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).

Waste indicators according to EN 15804

IndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
HWDkg1.01E-21.04E-33.24E-3NDNDNDNDNDNDND0.00E+01.62E-50.00E+01.06E-50.00E+0
NHWDkg8.30E+01.78E+07.38E-1NDNDNDNDNDNDND0.00E+03.07E-20.00E+04.75E+00.00E+0
RWDkg7.99E-57.55E-65.47E-6NDNDNDNDNDNDND0.00E+01.89E-70.00E+01.06E-70.00E+0
AcronymsHWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed.
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).

Output flow indicators according to EN 15804

IndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
CRUkg0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
MFRkg0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
MERkg0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
EEEMJ, net calorific value0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
EETMJ, net calorific value0.00E+00.00E+00.00E+0NDNDNDNDNDNDND0.00E+00.00E+00.00E+00.00E+00.00E+0
AcronymsCRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy.
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).

Results for additional scenarios for modules A4-C4

Additional scenarioBituplus E4200 EG 100% Recycling
Description of the scenario/methodThis scenario results are valid for both 100% reuse and 100% recycling scenarios.
Results for additional scenarios for modules A4-C4
Impact categoryIndicatorUnitA1-A3A4A5B1B2B3B4B5B6B7C1C2C3C4D
Climate change - fossilGWP-fossilkg CO2 eq.7.81E+02.76E+01.06E+0NDNDNDNDNDNDND0.00E+04.52E-22.09E-20.00E+0-7.81E+0
Climate change - biogenicGWP-biogenickg CO2 eq.5.09E-36.92E-42.97E-3NDNDNDNDNDNDND0.00E+09.54E-62.32E-60.00E+0-5.09E-3
Climate change - land use and land-use changeGWP-luluckg CO2 eq.4.37E-31.24E-33.50E-4NDNDNDNDNDNDND0.00E+01.50E-52.14E-60.00E+0-4.37E-3
Climate change - totalGWP-totalkg CO2 eq.7.82E+02.76E+01.06E+0NDNDNDNDNDNDND0.00E+04.52E-22.09E-20.00E+0-7.82E+0
Ozone depletionODPkg CFC-11 eq.3.37E-73.63E-83.66E-8NDNDNDNDNDNDND0.00E+09.94E-103.10E-100.00E+0-3.37E-7
AcidificationAPmol H+ eq.2.95E-21.05E-23.16E-3NDNDNDNDNDNDND0.00E+02.53E-41.87E-40.00E+0-2.95E-2
Eutrophication aquatic freshwaterEP-freshwaterkg P eq.1.69E-43.42E-51.25E-5NDNDNDNDNDNDND0.00E+03.31E-77.31E-80.00E+0-1.69E-4
Eutrophication aquatic marineEP-marinekg N eq.5.59E-33.52E-36.57E-4NDNDNDNDNDNDND0.00E+01.05E-48.68E-50.00E+0-5.59E-3
Eutrophication terrestrialEP-terrestrialmol N eq.6.29E-23.89E-27.19E-3NDNDNDNDNDNDND0.00E+01.15E-39.52E-40.00E+0-6.29E-2
Photochemical ozone formationPOCPkg NMVOC eq.3.50E-21.43E-24.24E-3NDNDNDNDNDNDND0.00E+03.75E-42.85E-40.00E+0-3.50E-2
Depletion of abiotic resources - minerals and metalsADP-minerals&metals1kg Sb eq.5.73E-59.08E-63.86E-6NDNDNDNDNDNDND0.00E+01.52E-77.46E-90.00E+0-5.73E-5
Depletion of abiotic resources - fossil fuelsADP-fossil1MJ, net calorific value1.79E+23.83E+12.11E+1NDNDNDNDNDNDND0.00E+06.46E-12.72E-10.00E+0-1.79E+2
Water useWDP1m3 world eq. deprived2.96E+01.78E-12.20E-1NDNDNDNDNDNDND0.00E+02.49E-35.81E-40.00E+0-2.96E+0
Climate change - GWP-GHGGWP-GHGkg CO2 eq.7.51E+02.74E+01.04E+0NDNDNDNDNDNDND0.00E+04.49E-22.09E-20.00E+0-7.51E+0
Acronyms
DisclaimersThe Results are valid for both 100% reuse and 100% recycling scenarios.
General disclaimerThe results of the end-of-life stage (modules C1-C4) should be considered when using the results of the product stage (modules A1-A3/A1-A5 for services).

Abbreviations

Not applicable

References

General Programme Instructions of the International EPD® System. Version 5.0.1.

Product Category Rules PCR 2019:14 Construction products, version 2.0.1 Published on 2025.04.07 valid until: 2030.04.07, based on the European standard UNI-EN 15804:2012+A2:2020.

UNI-EN ISO 14040:2006 – Environmental management – Life Cycle Assessment – Principles and framework.

UNI-EN ISO 14044:2006 – Environmental management – Life Cycle Assessment – Requirements.

UNI-EN ISO 14025:2006- Labels and environmental declarations.

ISO/TR 14047: 2003 – Environmental management – Life Cycle Assessment – LCI application examples.

ISO/TS 14048: 2003 – Environmental management – Life Cycle Assessment – Data inventory.

ISO/TR 14049: 2000 – Environmental management – Life Cycle Assessment – Examples of application of objectives and scope and inventory analysis.

UNI-EN 15804:2012+A2: Sustainability in construction. Product environmental statements. Commodity category rules for construction products.

ISO (2017): ISO 21930:2017, Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services

Version history

Version 001, 2025-12-18